A learnable EEG channel selection method for MI-BCI using efficient channel attention

Author:

Tong Lina,Qian Yihui,Peng Liang,Wang Chen,Hou Zeng-Guang

Abstract

IntroductionDuring electroencephalography (EEG)-based motor imagery-brain-computer interfaces (MI-BCIs) task, a large number of electrodes are commonly used, and consume much computational resources. Therefore, channel selection is crucial while ensuring classification accuracy.MethodsThis paper proposes a channel selection method by integrating the efficient channel attention (ECA) module with a convolutional neural network (CNN). During model training process, the ECA module automatically assigns the channel weights by evaluating the relative importance for BCI classification accuracy of every channel. Then a ranking of EEG channel importance can be established so as to select an appropriate number of channels to form a channel subset from the ranking. In this paper, the ECA module is embedded into a commonly used network for MI, and comparative experiments are conducted on the BCI Competition IV dataset 2a.Results and discussionThe proposed method achieved an average accuracy of 75.76% with all 22 channels and 69.52% with eight channels in a four-class classification task, outperforming other state-of-the-art EEG channel selection methods. The result demonstrates that the proposed method provides an effective channel selection approach for EEG-based MI-BCI.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference37 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3