Modulation of colonic function in irritable bowel syndrome rats by electroacupuncture at ST25 and the neurobiological links between ST25 and the colon

Author:

Zhang Lili,Yu Cheng,Chen Biwei,Chao Yuqiao,Zhang Haiyan,Zhao Qinyu,Yang Kaiwei,Zhang Yujiao,Chen Shaozong

Abstract

Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disease characterized by abdominal pain and defecation disorders. Acupuncture therapy positively affects IBS, with ST25 being the main point. However, ST25 has mostly been used in conjunction with other acupoints. This study aimed to observe the therapeutic effect of electroacupuncture at ST25 alone in IBS and the neurobiological mechanism of ST25 associated with the colon. First, we observed the effect of electroacupuncture at ST25 on the visceral pain threshold and slow-wave discharge of the colon in IBS model rats. Second, we explored the neurobiological mechanism of ST25 associated with the colon using a neural tracer technique. The results showed that (1) electroacupuncture at ST25 alone can alleviate visceral hypersensitivity and restore normal slow-wave frequency and rhythm of the colon in IBS rats; (2) there is a close neuroanatomical connection between ST25 and the colon, i.e., in the dorsal root ganglion (DRG), ST25 is similar in innervation to the colon, mainly in the T8–L1 segment, while the presence of double-labeled positive neurons is present in a part of the DRG; retrogradely labeled motor neurons associated with ST25 were observed in the anterior horn of the spinal cord, and retrogradely labeled sympathetic postganglionic neurons associated with ST25 were observed in the sympathetic nerve chain. These findings suggested that the DRGs and the dorsal horn of the spinal cord are important targets for electroacupuncture at ST25 to reduce visceral hypersensitivity in IBS rats. The sympathetic ganglia may be an important site for ST25 to regulate intestinal motility. The neurobiological mechanism of ST25 action in IBS rats should be further investigated in the future by combining related techniques, such as pseudorabies virus, optogenetics, calcium imaging, and electrophysiology.

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3