Full-body pose reconstruction and correction in virtual reality for rehabilitation training

Author:

Dai Xiaokun,Zhang Zhen,Zhao Shuting,Liu Xueli,Chen Xinrong

Abstract

Existing statistical data indicates that an increasing number of people now require rehabilitation to restore compromised physical mobility. During the rehabilitation process, physical therapists evaluate and guide the movements of patients, aiding them in a more effective recovery of rehabilitation and preventing secondary injuries. However, the immutability of mobility and the expensive price of rehabilitation training hinder some patients from timely access to rehabilitation. Utilizing virtual reality for rehabilitation training might offer a potential alleviation to these issues. However, prevalent pose reconstruction algorithms in rehabilitation primarily rely on images, limiting their applicability to virtual reality. Furthermore, existing pose evaluation and correction methods in the field of rehabilitation focus on providing clinical metrics for doctors, and failed to offer patients efficient movement guidance. In this paper, a virtual reality-based rehabilitation training method is proposed. The sparse motion signals from virtual reality devices, specifically head-mounted displays hand controllers, is used to reconstruct full body poses. Subsequently, the reconstructed poses and the standard poses are fed into a natural language processing model, which contrasts the difference between the two poses and provides effective pose correction guidance in the form of natural language. Quantitative and qualitative results indicate that the proposed method can accurately reconstruct full body poses from sparse motion signals in real-time. By referencing standard poses, the model generates professional motion correction guidance text. This approach facilitates virtual reality-based rehabilitation training, reducing the cost of rehabilitation training and enhancing the efficiency of self-rehabilitation training.

Publisher

Frontiers Media SA

Reference40 articles.

1. Sensorimotor training in virtual reality: a review;Adamovich;NeuroRehabilitation,2009

2. Coolmoves: user motion accentuation in virtual reality;Ahuja;Proc. ACM Interact. Mob. Wear. Ubiquit. Technol,2021

3. Skeleton-based human action evaluation using graph convolutional network for monitoring Alzheimer's progression;Bruce;Pat. Recogn,2021

4. Posescript: 3D human poses from natural language;Delmas,2022

5. Posefix: correcting 3D human poses with natural language;Delmas;Proceedings of the IEEE/CVF International Conference on Computer Vision,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3