Brain tumor segmentation in multimodal MRI via pixel-level and feature-level image fusion

Author:

Liu Yu,Mu Fuhao,Shi Yu,Cheng Juan,Li Chang,Chen Xun

Abstract

Brain tumor segmentation in multimodal MRI volumes is of great significance to disease diagnosis, treatment planning, survival prediction and other relevant tasks. However, most existing brain tumor segmentation methods fail to make sufficient use of multimodal information. The most common way is to simply stack the original multimodal images or their low-level features as the model input, and many methods treat each modality data with equal importance to a given segmentation target. In this paper, we introduce multimodal image fusion technique including both pixel-level fusion and feature-level fusion for brain tumor segmentation, aiming to achieve more sufficient and finer utilization of multimodal information. At the pixel level, we present a convolutional network named PIF-Net for 3D MR image fusion to enrich the input modalities of the segmentation model. The fused modalities can strengthen the association among different types of pathological information captured by multiple source modalities, leading to a modality enhancement effect. At the feature level, we design an attention-based modality selection feature fusion (MSFF) module for multimodal feature refinement to address the difference among multiple modalities for a given segmentation target. A two-stage brain tumor segmentation framework is accordingly proposed based on the above components and the popular V-Net model. Experiments are conducted on the BraTS 2019 and BraTS 2020 benchmarks. The results demonstrate that the proposed components on both pixel-level and feature-level fusion can effectively improve the segmentation accuracy of brain tumors.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference76 articles.

1. “Multimodal segmentation with MGF-Net and the focal tversky loss function,”;Abraham,2019

2. “Hybrid labels for brain tumor segmentation,”;Ahmad,2019

3. “Multimodal brain tumor segmentation with normal appearance autoencoder,”;Astaraki,2019

4. “Brain tumor segmentation with cascaded deep convolutional neural network,”;Baid,2019

5. Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge;Bakas,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3