Attention-based 3D convolutional recurrent neural network model for multimodal emotion recognition

Author:

Du Yiming,Li Penghai,Cheng Longlong,Zhang Xuanwei,Li Mingji,Li Fengzhou

Abstract

IntroductionMultimodal emotion recognition has become a hot topic in human-computer interaction and intelligent healthcare fields. However, combining information from different human different modalities for emotion computation is still challenging.MethodsIn this paper, we propose a three-dimensional convolutional recurrent neural network model (referred to as 3FACRNN network) based on multimodal fusion and attention mechanism. The 3FACRNN network model consists of a visual network and an EEG network. The visual network is composed of a cascaded convolutional neural network–time convolutional network (CNN-TCN). In the EEG network, the 3D feature building module was added to integrate band information, spatial information and temporal information of the EEG signal, and the band attention and self-attention modules were added to the convolutional recurrent neural network (CRNN). The former explores the effect of different frequency bands on network recognition performance, while the latter is to obtain the intrinsic similarity of different EEG samples.ResultsTo investigate the effect of different frequency bands on the experiment, we obtained the average attention mask for all subjects in different frequency bands. The distribution of the attention masks across the different frequency bands suggests that signals more relevant to human emotions may be active in the high frequency bands γ (31–50 Hz). Finally, we try to use the multi-task loss function Lc to force the approximation of the intermediate feature vectors of the visual and EEG modalities, with the aim of using the knowledge of the visual modalities to improve the performance of the EEG network model. The mean recognition accuracy and standard deviation of the proposed method on the two multimodal sentiment datasets DEAP and MAHNOB-HCI (arousal, valence) were 96.75 ± 1.75, 96.86 ± 1.33; 97.55 ± 1.51, 98.37 ± 1.07, better than those of the state-of-the-art multimodal recognition approaches.DiscussionThe experimental results show that starting from the multimodal information, the facial video frames and electroencephalogram (EEG) signals of the subjects are used as inputs to the emotion recognition network, which can enhance the stability of the emotion network and improve the recognition accuracy of the emotion network. In addition, in future work, we will try to utilize sparse matrix methods and deep convolutional networks to improve the performance of multimodal emotion networks.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3