Myogenic artifacts masquerade as neuroplasticity in the auditory frequency-following response

Author:

Bidelman Gavin M.,Sisson Alexandria,Rizzi Rose,MacLean Jessica,Baer Kaitlin

Abstract

The frequency-following response (FFR) is an evoked potential that provides a neural index of complex sound encoding in the brain. FFRs have been widely used to characterize speech and music processing, experience-dependent neuroplasticity (e.g., learning and musicianship), and biomarkers for hearing and language-based disorders that distort receptive communication abilities. It is widely assumed that FFRs stem from a mixture of phase-locked neurogenic activity from the brainstem and cortical structures along the hearing neuraxis. In this study, we challenge this prevailing view by demonstrating that upwards of ~50% of the FFR can originate from an unexpected myogenic source: contamination from the postauricular muscle (PAM) vestigial startle reflex. We measured PAM, transient auditory brainstem responses (ABRs), and sustained frequency-following response (FFR) potentials reflecting myogenic (PAM) and neurogenic (ABR/FFR) responses in young, normal-hearing listeners with varying degrees of musical training. We first establish that PAM artifact is present in all ears, varies with electrode proximity to the muscle, and can be experimentally manipulated by directing listeners' eye gaze toward the ear of sound stimulation. We then show this muscular noise easily confounds auditory FFRs, spuriously amplifying responses 3–4-fold with tandem PAM contraction and even explaining putative FFR enhancements observed in highly skilled musicians. Our findings expose a new and unrecognized myogenic source to the FFR that drives its large inter-subject variability and cast doubt on whether changes in the response typically attributed to neuroplasticity/pathology are solely of brain origin.

Funder

National Institute on Deafness and Other Communication Disorders

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3