Author:
Li Yao,Zhou Zihao,Li Qifan,Li Tao,Julian Ibegbu Nnamdi,Guo Hao,Chen Junjie
Abstract
The brain network structure is highly uncertain due to the noise in imaging signals and evaluation methods. Recent works have shown that uncertain brain networks could capture uncertain information with regards to functional connections. Most of the existing research studies covering uncertain brain networks used graph mining methods for analysis; for example, the mining uncertain subgraph patterns (MUSE) method was used to mine frequent subgraphs and the discriminative feature selection for uncertain graph classification (DUG) method was used to select discriminant subgraphs. However, these methods led to a lack of effective discriminative information; this reduced the classification accuracy for brain diseases. Therefore, considering these problems, we propose an approximate frequent subgraph mining algorithm based on pattern growth of frequent edge (unFEPG) for uncertain brain networks and a novel discriminative feature selection method based on statistical index (dfsSI) to perform graph mining and selection. Results showed that compared with the conventional methods, the unFEPG and dfsSI methods achieved a higher classification accuracy. Furthermore, to demonstrate the efficacy of the proposed method, we used consistent discriminative subgraph patterns based on thresholding and weighting approaches to compare the classification performance of uncertain networks and certain networks in a bidirectional manner. Results showed that classification performance of the uncertain network was superior to that of the certain network within a defined sparsity range. This indicated that if a better classification performance is to be achieved, it is necessary to select a certain brain network with a higher threshold or an uncertain brain network model. Moreover, if the uncertain brain network model was selected, it is necessary to make full use of the uncertain information of its functional connection.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shanxi Province
Reference94 articles.
1. The effect of model order selection in group PICA.;Abouelseoud;Hum. Brain Mapp.,2010
2. A baseline for the multivariate comparison of resting-state networks.;Allen;Front. Syst. Neurosci.,2011
3. Influence of internal carotid artery stenosis, blood pressure, glycated hemoglobin, and hemoglobin level on fMRI signals of stroke patients.;An;Neurol. Res.,2015
4. Investigations into resting-state connectivity using independent component analysis.;Beckmann;Philos. Trans. R. Soc. B Biol. Sci.,2005
5. Median survival or mean survival: which measure is the most appropriate for patients, physicians, and policymakers?;Ben-Aharon;Oncologist,2019