Author:
Demirayak Pinar,Deshpande Gopikrishna,Visscher Kristina
Abstract
Magnetic resonance imaging (MRI) scanners at ultra-high magnetic fields have become available to use in humans, thus enabling researchers to investigate the human brain in detail. By increasing the spatial resolution, ultra-high field MR allows both structural and functional characterization of cortical layers. Techniques that can differentiate cortical layers, such as histological studies and electrode-based measurements have made critical contributions to the understanding of brain function, but these techniques are invasive and thus mainly available in animal models. There are likely to be differences in the organization of circuits between humans and even our closest evolutionary neighbors. Thus research on the human brain is essential. Ultra-high field MRI can observe differences between cortical layers, but is non-invasive and can be used in humans. Extensive previous literature has shown that neuronal connections between brain areas that transmit feedback and feedforward information terminate in different layers of the cortex. Layer-specific functional MRI (fMRI) allows the identification of layer-specific hemodynamic responses, distinguishing feedback and feedforward pathways. This capability has been particularly important for understanding visual processing, as it has allowed researchers to test hypotheses concerning feedback and feedforward information in visual cortical areas. In this review, we provide a general overview of successful ultra-high field MRI applications in vision research as examples of future research.
Funder
National Institutes of Health
Fight for Sight
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献