A multimodal human-robot sign language interaction framework applied in social robots

Author:

Li Jie,Zhong Junpei,Wang Ning

Abstract

Deaf-mutes face many difficulties in daily interactions with hearing people through spoken language. Sign language is an important way of expression and communication for deaf-mutes. Therefore, breaking the communication barrier between the deaf-mute and hearing communities is significant for facilitating their integration into society. To help them integrate into social life better, we propose a multimodal Chinese sign language (CSL) gesture interaction framework based on social robots. The CSL gesture information including both static and dynamic gestures is captured from two different modal sensors. A wearable Myo armband and a Leap Motion sensor are used to collect human arm surface electromyography (sEMG) signals and hand 3D vectors, respectively. Two modalities of gesture datasets are preprocessed and fused to improve the recognition accuracy and to reduce the processing time cost of the network before sending it to the classifier. Since the input datasets of the proposed framework are temporal sequence gestures, the long-short term memory recurrent neural network is used to classify these input sequences. Comparative experiments are performed on an NAO robot to test our method. Moreover, our method can effectively improve CSL gesture recognition accuracy, which has potential applications in a variety of gesture interaction scenarios not only in social robots.

Funder

Chongqing Technology and Business University

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference58 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Effect of Use of Social Robot NAO on Children's Motivation and Emotional States in Special Education;2024 21st International Conference on Ubiquitous Robots (UR);2024-06-24

2. A Data Acquisiton System with sEMG Signal and Camera Images for Finger Classification with Machine Learning Algorithms;Engineering, Technology & Applied Science Research;2024-04-02

3. Recent Advances on Deep Learning for Sign Language Recognition;Computer Modeling in Engineering & Sciences;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3