ACLMHA and FML: A brain-inspired kinship verification framework

Author:

Li Chen,Bai Menghan,Zhang Lipei,Xiao Ke,Song Wei,Zeng Hui

Abstract

As an extended research direction of face recognition, kinship verification based on the face image is an interesting yet challenging task, which aims to determine whether two individuals are kin-related based on their facial images. Face image-based kinship verification benefits many applications in real life, including: missing children search, family photo classification, kinship information mining, family privacy protection, etc. Studies presented thus far provide evidence that face kinship verification still offers many challenges. Hence in this paper, we propose a novel kinship verification architecture, the main contributions of which are as follows: To boost the deep model to capture various and abundant local features from different local face regions, we propose an attention center learning guided multi-head attention mechanism to supervise the learning of attention weights and make different attention heads notice the characteristics of different regions. To combat the misclassification caused by single feature center loss, we propose a family-level multi-center loss to ensure a more proper intra/inter-class distance measurement for kinship verification. To measure the potential similarity of features among relatives better, we propose to introduce the relation comparison module to measure the similarity among features at a deeper level. Extensive experiments are conducted on the widely used kinship verification dataset—Family in the Wild (FIW) dataset. Compared with other state-of-art (SOTA) methods, encouraging results are obtained, which verify the effectiveness of our proposed method.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference50 articles.

1. Face description with local binary patterns: application to face recognition;Ahonen;IEEE Trans. Pattern Anal. Mach. Intell.,2006

2. Abd-net: attentive but diverse person re-identification;Chen,2019

3. The attentional requirements of consciousness;Cohen;Trends Cogn. Sci.,2012

4. A unified approach to kinship verification;Dahan;IEEE Trans. Pattern Anal. Mach. Intell.,2020

5. Histograms of oriented gradients for human detection;Dalal,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3