Anisotropic Psychophysical Trends in the Discrimination of Tactile Direction in a Precision Grip

Author:

Tanner Justin,Newman Naomi,Helms Tillery Stephen

Abstract

Tactile cues arising from interactions with objects have a sense of directionality which affects grasp. Low latency responses to varied grip perturbations indicate that grasp safety margins are exaggerated in certain directions and conditions. In a grip with the ulnar-radial axis vertical, evidence suggests that distal and downward directions are more sensitive to task parameters and have larger safety margins. This suggests that, for the purpose of applying forces with the fingers, reference frames with respect to the hand and gravity are both in operation. In this experiment, we examined human sensitivities to the direction of tactile movement in the context of precision grip in orientations either orthogonal to or parallel to gravity. Subjects performed a two-alternative-forced-choice task involving a textured cube which moved orthogonal to their grip axis. Subjects’ arms were placed in a brace that allowed for finger movement but minimized arm movement. Movement of thumb and index joints were monitored via PhaseSpace motion capture. The subject was presented with a textured cube and instructed to lightly grasp the cube, as if it were slipping. In each trial the object was first translated 1 cm in 0° (proximal), 90° (radial), 180° (distal), or 270° (ulnar) and returned to its origin. This primary stimulus was immediately followed by a 10 mm secondary stimulus at a random 5° interval between −30° and 30° of the primary stimulus. Response from the subject after each pair of stimuli indicated whether the test direction felt the same as or different from the primary stimulus. Traditional bias and sensitivity analyses did not provide conclusive results but suggested that performance is best in the ulnar-radial axis regardless of gravity. Modeling of the response curve generated a detection threshold for each primary stimulus. Lower thresholds, indicating improved detection, persisted in the ulnar-radial axis. Anisotropic thresholds of increased detection appear to coincide with digit displacement and appear to be independent of the grasp orientation.

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3