Not All Electrode Channels Are Needed: Knowledge Transfer From Only Stimulated Brain Regions for EEG Emotion Recognition

Author:

Perry Fordson Hayford,Xing Xiaofen,Guo Kailing,Xu Xiangmin

Abstract

Emotion recognition from affective brain-computer interfaces (aBCI) has garnered a lot of attention in human-computer interactions. Electroencephalographic (EEG) signals collected and stored in one database have been mostly used due to their ability to detect brain activities in real time and their reliability. Nevertheless, large EEG individual differences occur amongst subjects making it impossible for models to share information across. New labeled data is collected and trained separately for new subjects which costs a lot of time. Also, during EEG data collection across databases, different stimulation is introduced to subjects. Audio-visual stimulation (AVS) is commonly used in studying the emotional responses of subjects. In this article, we propose a brain region aware domain adaptation (BRADA) algorithm to treat features from auditory and visual brain regions differently, which effectively tackle subject-to-subject variations and mitigate distribution mismatch across databases. BRADA is a new framework that works with the existing transfer learning method. We apply BRADA to both cross-subject and cross-database settings. The experimental results indicate that our proposed transfer learning method can improve valence-arousal emotion recognition tasks.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference53 articles.

1. Emotions recognition using EEG signals: a survey;Alarcão;IEEE Trans. Affect. Comput,2019

2. A review of channel selection algorithms for EEG signal processing;Alotaiby;EURASIP J. Adv. Signal Process,2015

3. On the influence of affect in EEG-based subject identification;Arnau-Gonzalez;IEEE Trans. Affect. Comput,2021

4. weighted transfer learning for improving motor imagery-based brain-computer interface;Azab;IEEE Trans. Neural Syst. Rehabil. Eng,2019

5. Emotional state detection based on common spatial patterns of EEG;Basar;Signal Image Video Process,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3