Hybrid UNet transformer architecture for ischemic stoke segmentation with MRI and CT datasets

Author:

Soh Wei Kwek,Rajapakse Jagath C.

Abstract

A hybrid UNet and Transformer (HUT) network is introduced to combine the merits of the UNet and Transformer architectures, improving brain lesion segmentation from MRI and CT scans. The HUT overcomes the limitations of conventional approaches by utilizing two parallel stages: one based on UNet and the other on Transformers. The Transformer-based stage captures global dependencies and long-range correlations. It uses intermediate feature vectors from the UNet decoder and improves segmentation accuracy by enhancing the attention and relationship modeling between voxel patches derived from the 3D brain volumes. In addition, HUT incorporates self-supervised learning on the transformer network. This allows the transformer network to learn by maintaining consistency between the classification layers of the different resolutions of patches and augmentations. There is an improvement in the rate of convergence of the training and the overall capability of segmentation. Experimental results on benchmark datasets, including ATLAS and ISLES2018, demonstrate HUT's advantage over the state-of-the-art methods. HUT achieves higher Dice scores and reduced Hausdorff Distance scores in single-modality and multi-modality lesion segmentation. HUT outperforms the state-the-art network SPiN in the single-modality MRI segmentation on Anatomical Tracings of lesion After Stroke (ATLAS) dataset by 4.84% of Dice score and a large margin of 40.7% in the Hausdorff Distance score. HUT also performed well on CT perfusion brain scans in the Ischemic Stroke Lesion Segmentation (ISLES2018) dataset and demonstrated an improvement over the recent state-of-the-art network USSLNet by 3.3% in the Dice score and 12.5% in the Hausdorff Distance score. With the analysis of both single and multi-modalities datasets (ATLASR12 and ISLES2018), we show that HUT can perform and generalize well on different datasets.Code is available at: https://github.com/vicsohntu/HUT_CT.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference33 articles.

1. Swin-unet: Unet-like pure transformer for medical image segmentation;Cao;arXiv preprint arXiv:2105.05537,2021

2. A multidimensional segmentation evaluation for medical image data;Cárdenes;Comput. Methods Prog. Biomed,2009

3. A benchmarking tool to evaluate computer tomography perfusion infarct core predictions against a DWI standard;Cereda;J. Cereb. Blood Flow Metab,2016

4. “Crossvit: cross-attention multi-scale vision transformer for image classification,”;Chen,2021

5. Transunet: transformers make strong encoders for medical image segmentation;Chen;arXiv preprint arXiv:2102.04306,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence in ischemic stroke images: current applications and future directions;Frontiers in Neurology;2024-07-10

2. Efficient Attention-guided Transformer for brain stroke segmentation;Proceedings of the 2024 9th International Conference on Multimedia and Image Processing;2024-04-20

3. Transformer’s Role in Brain MRI: A Scoping Review;IEEE Access;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3