Single-Pulse TMS to the Temporo-Occipital and Dorsolateral Prefrontal Cortex Evokes Lateralized Long Latency EEG Responses at the Stimulation Site

Author:

Jarczok Tomasz A.,Roebruck Friederike,Pokorny Lena,Biermann Lea,Roessner Veit,Klein Christoph,Bender Stephan

Abstract

IntroductionTranscranial magnetic stimulation (TMS)–evoked potentials (TEPs) allow for probing cortical functions in health and pathology. However, there is uncertainty whether long-latency TMS-evoked potentials reflect functioning of the targeted cortical area. It has been suggested that components such as the TMS-evoked N100 are stereotypical and related to nonspecific sensory processes rather than transcranial effects of the changing magnetic field. In contrast, TEPs that vary according to the targeted brain region and are systematically lateralized toward the stimulated hemisphere can be considered to reflect activity in the stimulated brain region resulting from transcranial electromagnetic induction.MethodsTMS with concurrent 64-channel electroencephalography (EEG) was sequentially performed in homologous areas of both hemispheres. One sample of healthy adults received TMS to the dorsolateral prefrontal cortex; another sample received TMS to the temporo-occipital cortex. We analyzed late negative TEP deflections corresponding to the N100 component in motor cortex stimulation.ResultsTEP topography varied according to the stimulation target site. Long-latency negative TEP deflections were systematically lateralized (higher in ipsilateral compared to contralateral electrodes) in electrodes over the stimulated brain region. A calculation that removes evoked components that are not systematically lateralized relative to the stimulated hemisphere revealed negative maxima located around the respective target sites.ConclusionTEPs contain long-latency negative components that are lateralized toward the stimulated hemisphere and have their topographic maxima at the respective stimulation sites. They can be differentiated from co-occurring components that are invariable across different stimulation sites (probably reflecting coactivation of peripheral sensory afferences) according to their spatiotemporal patterns. Lateralized long-latency TEP components located at the stimulation site likely reflect activity evoked in the targeted cortex region by direct transcranial effects and are therefore suitable for assessing cortical functions.

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3