A lightweight attention deep learning method for human-vehicle recognition based on wireless sensing technology

Author:

Song Mingxin,Zhu Rensheng,Chen Xinquan,Zheng Chunlei,Lou Liangliang

Abstract

Wireless sensing-based human-vehicle recognition (WiHVR) methods have become a hot spot for research due to its non-invasiveness and cost-effective advantages. However, existing WiHVR methods shows limited performance and slow execution time on human-vehicle classification task. To address this issue, a lightweight wireless sensing attention-based deep learning model (LW-WADL) is proposed, which consists of a CBAM module and several depthwise separable convolution blocks in series. LW-WADL takes raw channel state information (CSI) as input, and extracts the advanced features of CSI by jointly using depthwise separable convolution and convolutional block attention mechanism (CBAM). Experimental results show that the proposed model achieves 96.26% accuracy on the constructed CSI-based dataset, and the model size is only 5.89% of the state of the art (SOTA) model. The results demonstrate that the proposed model achieves better performance on WiHVR tasks while reducing the model size compared to SOTA model.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference39 articles.

1. A ubiquitous WiFi-based fine-grained gesture recognition system.;Abdelnasser;IEEE Trans. Mobile Comput.,2018

2. SafeDrive-Fi: A multimodal and device free dangerous driving recognition system using WiFi;Arshad;Proceedings of the 2018 IEEE international conference on communications (ICC),2018

3. Human motion patterns recognition based on rss and support vector machines;Bhat;Proceedings of the 2020 IEEE wireless communications and networking conference (WCNC),2020

4. WiFi CSI based passive human activity recognition using attention based BLSTM.;Chen;IEEE Trans. Mobile Comput.,2018

5. Xception: Deep learning with depthwise separable convolutions;Chollet;Proceedings of the IEEE conference on computer vision and pattern recognition,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3