Author:
Boisgontier Jennifer,Beccaria Kévin,Saitovitch Ana,Blauwblomme Thomas,Guida Lelio,Fillon Ludovic,Dufour Christelle,Grill Jacques,Lemaitre Hervé,Puget Stéphanie,Vinçon-Leite Alice,Dangouloff-Ros Volodia,Charpy Sarah,Benichi Sandro,Levy Raphaël,Roux Charles-Joris,Grévent David,Bourgeois Marie,Saidoun Lila,Gaillard Raphaël,Zilbovicius Monica,Boddaert Nathalie
Abstract
Zolpidem is a sedative drug that has been shown to induce a paradoxical effect, restoring brain function in wide range of neurological disorders. The underlying functional mechanism of the effect of zolpidem in the brain in clinical improvement is still poorly understood. Thus, we aimed to investigate rest brain function to study zolpidem-induced symptom improvement in a patient who developed postoperative pediatric cerebellar mutism syndrome, a postoperative complication characterized by delayed onset transient mutism/reduced speech that can occur after medulloblastoma resection. The patient experienced clinical recovery after a single dose of zolpidem. Brain function was investigated using arterial spin labeling MRI and resting-state functional MRI. Imaging was performed at three time-points: preoperative, postoperative during symptoms, and after zolpidem intake when the symptoms regressed. Whole brain rest cerebral blood flow (CBF) and resting state functional connectivity using Pearson coefficient correlations between pairs of regions of interest were investigated two-by-two at the different time points. A comparison between postoperative and preoperative images showed a significant decrease in rest CBF in the left supplementary motor area, Broca’s area, and the left striatum and a decrease in functional connectivity within the dentato-thalamo-cortical and cortico-striato-pallido-thalamo-cortical loops. Post-zolpidem images showed increased CBF in the left striatum and increased functional connectivity within the disrupted loops relative to postoperative images. Thus, we observed functional changes within the broader speech network and thalamo-subcortical interactions associated with the paradoxical effect of zolpidem in promoting clinical recovery. This should encourage further functional investigations in the brain to better understand the mechanism of zolpidem in neurological recovery.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献