Author:
Hong Jinwoo,Yun Hyuk Jin,Park Gilsoon,Kim Seonggyu,Ou Yangming,Vasung Lana,Rollins Caitlin K.,Ortinau Cynthia M.,Takeoka Emiko,Akiyama Shizuko,Tarui Tomo,Estroff Judy A.,Grant Patricia Ellen,Lee Jong-Min,Im Kiho
Abstract
The accurate prediction of fetal brain age using magnetic resonance imaging (MRI) may contribute to the identification of brain abnormalities and the risk of adverse developmental outcomes. This study aimed to propose a method for predicting fetal brain age using MRIs from 220 healthy fetuses between 15.9 and 38.7 weeks of gestational age (GA). We built a 2D single-channel convolutional neural network (CNN) with multiplanar MRI slices in different orthogonal planes without correction for interslice motion. In each fetus, multiple age predictions from different slices were generated, and the brain age was obtained using the mode that determined the most frequent value among the multiple predictions from the 2D single-channel CNN. We obtained a mean absolute error (MAE) of 0.125 weeks (0.875 days) between the GA and brain age across the fetuses. The use of multiplanar slices achieved significantly lower prediction error and its variance than the use of a single slice and a single MRI stack. Our 2D single-channel CNN with multiplanar slices yielded a significantly lower stack-wise MAE (0.304 weeks) than the 2D multi-channel (MAE = 0.979, p < 0.001) and 3D (MAE = 1.114, p < 0.001) CNNs. The saliency maps from our method indicated that the anatomical information describing the cortex and ventricles was the primary contributor to brain age prediction. With the application of the proposed method to external MRIs from 21 healthy fetuses, we obtained an MAE of 0.508 weeks. Based on the external MRIs, we found that the stack-wise MAE of the 2D single-channel CNN (0.743 weeks) was significantly lower than those of the 2D multi-channel (1.466 weeks, p < 0.001) and 3D (1.241 weeks, p < 0.001) CNNs. These results demonstrate that our method with multiplanar slices accurately predicts fetal brain age without the need for increased dimensionality or complex MRI preprocessing steps.
Funder
Korea Health Industry Development Institute
Ministry of Science and ICT, South Korea
National Institute of Neurological Disorders and Stroke
National Institute of Biomedical Imaging and Bioengineering
Eunice Kennedy Shriver National Institute of Child Health and Human Development
American Heart Association
Reference89 articles.
1. Imaging local genetic influences on cortical folding.;Alexander-Bloch;Proc. Natl. Acad. Sci. U.S.A.,2020
2. Methods for estimating the due date.;Obstet. Gynecol.,2017
3. Complex trajectories of brain development in the healthy human fetus.;Andescavage;Cereb. Cortex,2017
4. Normalization propagation: a parametric technique for removing internal covariate shift in deep networks.;Arpit;arXiv,2016
5. Biological brain age Prediction using cortical thickness data: a large scale cohort study.;Aycheh;Front. Aging Neurosci.,2018
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献