Artificial psychophysics questions classical hue cancellation experiments

Author:

Vila-Tomás Jorge,Hernández-Cámara Pablo,Malo Jesús

Abstract

We show that classical hue cancellation experiments lead to human-like opponent curves even if the task is done by trivial (identity) artificial networks. Specifically, human-like opponent spectral sensitivities always emerge in artificial networks as long as (i) the retina converts the input radiation into any tristimulus-like representation, and (ii) the post-retinal network solves the standard hue cancellation task, e.g. the network looks for the weights of the cancelling lights so that every monochromatic stimulus plus the weighted cancelling lights match a grey reference in the (arbitrary) color representation used by the network. In fact, the specific cancellation lights (and not the network architecture) are key to obtain human-like curves: results show that the classical choice of the lights is the one that leads to the best (more human-like) result, and any other choices lead to progressively different spectral sensitivities. We show this in two ways: through artificial psychophysics using a range of networks with different architectures and a range of cancellation lights, and through a change-of-basis theoretical analogy of the experiments. This suggests that the opponent curves of the classical experiment are just a by-product of the front-end photoreceptors and of a very specific experimental choice but they do not inform about the downstream color representation. In fact, the architecture of the post-retinal network (signal recombination or internal color space) seems irrelevant for the emergence of the curves in the classical experiment. This result in artificial networks questions the conventional interpretation of the classical result in humans by Jameson and Hurvich.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference55 articles.

1. Contrast sensitivity function in deep networks;Akbarinia;bioRxiv,2023

2. Dependence of the chromatic valence function on chromatic standards;Ayama;Vision Res,1989

3. “Sensory mechanisms, the reduction of redundancy, and intelligence,”;Barlow;Proc. of the Nat. Phys. Lab. Symposium on the Mechanization of Thought Process,1959

4. Redundancy reduction revisited;Barlow;Network: Comp. Neur. Syst,2001

5. The psychophysics toolbox;Brainard;Spatial Visi,1997

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3