Spatiotemporal cortical dynamics for visual scene processing as revealed by EEG decoding

Author:

Orima Taiki,Motoyoshi Isamu

Abstract

The human visual system rapidly recognizes the categories and global properties of complex natural scenes. The present study investigated the spatiotemporal dynamics of neural signals involved in visual scene processing using electroencephalography (EEG) decoding. We recorded visual evoked potentials from 11 human observers for 232 natural scenes, each of which belonged to one of 13 natural scene categories (e.g., a bedroom or open country) and had three global properties (naturalness, openness, and roughness). We trained a deep convolutional classification model of the natural scene categories and global properties using EEGNet. Having confirmed that the model successfully classified natural scene categories and the three global properties, we applied Grad-CAM to the EEGNet model to visualize the EEG channels and time points that contributed to the classification. The analysis showed that EEG signals in the occipital electrodes at short latencies (approximately 80 ~ ms) contributed to the classifications, whereas those in the frontal electrodes at relatively long latencies (200 ~ ms) contributed to the classification of naturalness and the individual scene category. These results suggest that different global properties are encoded in different cortical areas and with different timings, and that the combination of the EEGNet model and Grad-CAM can be a tool to investigate both temporal and spatial distribution of natural scene processing in the human brain.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference73 articles.

1. Sanity checks for saliency maps;Adebayo;Adv. Neural Inf. Proces. Syst.,2018

2. An area within human ventral cortex sensitive to “building” stimuli: evidence and implications;Aguirre;Neuron,1998

3. Biologically-inspired object recognition system for recognizing natural scene categories;Alameer,2016

4. Gradient-based attribution methods;Ancona,2019

5. The time course of visual processing: backward masking and natural scene categorisation;Bacon-Macé;Vis. Res.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3