Author:
Li Junfeng,Xie Dehong,Li Miaoxin,Liu Shiwei,Wei Chun’Ao
Abstract
Due to the dyeing process, learning samples used for color prediction of pre-colored fiber blends should be re-prepared once the batches of the fiber change. The preparation of the sample is time-consuming and leads to manpower and material waste. The two-constant Kubelka-Munk theory is selected in this article to investigate the feasibility to minimize and optimize the learning samples for the theory since it has the highest prediction accuracy and moderate learning sample size requirement among all the color prediction models. Results show that two samples, namely, a masstone obtained by 100% pre-colored fiber and a tint mixed by 40% pre-colored fiber and 60% white fiber, are enough to determine the absorption and scattering coefficients of a pre-colored fiber. In addition, the optimal sample for the single-constant Kubelka-Munk theory is also explored.
Funder
Science and Technology Department, Henan Province
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献