Author:
Yang Zhe-Lun,Liang Ze-Yan,Lin Yi-Ke,Lin Fa-Bin,Rao Jian,Xu Xiong-Jie,Wang Chun-Hua,Chen Chun-Mei
Abstract
BackgroundThere was still no effective treatment for traumatic brain injury (TBI). Recently, many preclinical studies had shown promising efficacy of extracellular vesicles (EVs) from various cell sources. Our aim was to compare which cell-derived EVs were most effective in treating TBI through a network meta-analysis.MethodsWe searched four databases and screened various cell-derived EVs for use in preclinical studies of TBI treatment. A systematic review and network meta-analysis were conducted for two outcome indicators, modified Neurological Severity Score (mNSS) and Morris Water Maze (MWM), and they were ranked by the surface under the cumulative ranking curves (SUCRA). Bias risk assessment was performed with SYRCLE. R software (version 4.1.3, Boston, MA, USA) was used for data analysis.ResultsA total of 20 studies were included in this study, involving 383 animals. Astrocyte-derived extracellular vesicles (AEVs) ranked first in response to mNSS at day 1 (SUCRA: 0.26%), day 3 (SUCRA: 16.32%), and day 7 (SUCRA: 9.64%) post-TBI. Extracellular vesicles derived from mesenchymal stem cells (MSCEVs) were most effective in mNSS assessment on day 14 (SUCRA: 21.94%) and day 28 (SUCRA: 6.26%), as well as MWM’s escape latency (SUCRA: 6.16%) and time spent in the target quadrant (SUCRA: 86.52%). The result of mNSS analysis on day 21 showed that neural stem cell-derived extracellular vesicles (NSCEVs) had the best curative effect (SUCRA: 6.76%).ConclusionAEVs may be the best choice to improve early mNSS recovery after TBI. The efficacy of MSCEVs may be the best in the late mNSS and MWM after TBI.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/, identifier CRD42023377350.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献