Neurofilament Levels Are Reflecting the Loss of Presynaptic Dopamine Receptors in Movement Disorders

Author:

Diekämper Elena,Brix Britta,Stöcker Winfried,Vielhaber Stefan,Galazky Imke,Kreissl Michael C.,Genseke Philipp,Düzel Emrah,Körtvelyessy Péter

Abstract

Aims: Neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH) are biomarkers for neuroaxonal damage. We assessed whether NfL and other biomarker levels in the CSF are correlated to the loss of presynaptic dopamine transporters in neurons as detected with dopamine transporter SPECT (DaTscan).Methods: We retrospectively identified 47 patients (17 Alzheimer’s dementia, 10 idiopathic Parkinson’s disease, 7 Lewy body dementia, 13 progressive supranuclear palsy or corticobasal degeneration) who received a DaTscan and a lumbar puncture. DaTscan imaging was performed according to current guidelines, and z-scores indicating the decrease in uptake were software based calculated for the nucleus caudatus and putamen. The CSF biomarkers progranulin, total-tau, alpha-synuclein, NfL, and pNfH were correlated with the z-scores.Results: DaTscan results in AD patients did not correlate with any biomarker. Subsuming every movement disorder with nigrostriatal neurodegeneration resulted in a strong correlation between putamen/nucleus caudatus and NfL (nucleus caudatus right p < 0.01, putamen right p < 0.05, left p < 0.05) and between pNfH and putamen (right p < 0.05; left p < 0.042). Subdividing in disease cohorts did not reveal significant correlations. Progranulin, alpha-synuclein, and total-tau did not correlate with DaTscan results.Conclusion: We show a strong correlation of NfL and pNfH with pathological changes in presynaptic dopamine transporter density in the putamen concomitant to nigrostriatal degeneration. This correlation might explain the reported correlation of impaired motor functions in PD and NfL as seen before, despite the pathological heterogeneity of these diseases.

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3