Local structural-functional connectivity decoupling of caudate nucleus in infantile esotropia

Author:

Guo Jianlin,Chen Yuanyuan,Huang Lijuan,Liu Wen,Hu Di,Lv Yanqiu,Kang Huiying,Li Ningdong,Peng Yun

Abstract

Abnormal brain structural and functional properties were demonstrated in patients with infantile esotropia (IE). However, few studies have investigated the interaction between structural and functional connectivity (SC-FC) in patients with IE. Structural network was generated with diffusion tensor imaging and functional network was constructed with resting-state functional magnetic resonance imaging for 18 patients with IE as well as 20 age- and gender- matched healthy subjects. The SC-FC coupling for global connectome, short connectome and long connectome were examined in IE patients and compared with those of healthy subjects. A linear mixed effects model was employed to examine the group-age interaction in terms of the coupling metrics. The Pearson correlation between coupling measures and strabismus degree was evaluated in IE patients, on which the regulatory effect of age was also investigated through hierarchical regression analysis. Significantly decreased SC-FC coupling score for short connections was observed in left caudate nucleus (CAU) in IE patients, whereas no brain regions exhibited altered coupling metrics for global connections or long connections. The group-age interaction was also evident in local coupling metrics of left CAU. The age-related regulatory effect on coupling-degree association was distinguishing between brain regions implicated in visual processing and cognition-related brain areas in IE patients. Local SC-FC decoupling in CAU was evident in patients with IE and was initiated in their early postnatal period, possibly interfering the visual cortico-striatal loop and subcortical optokinetic pathway subserving visual processing and nasalward optokinesis during neurodevelopment, which provides new insight into underlying neuropathological mechanism of IE.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3