Isoquercetin Improves Inflammatory Response in Rats Following Ischemic Stroke

Author:

Shi Yunwei,Chen Xinyi,Liu Jiaxing,Fan Xingjuan,Jin Ying,Gu Jingxiao,Liang Jiale,Liang Xinmiao,Wang Caiping

Abstract

Inflammatory response contributes to brain injury after ischemia and reperfusion (I/R). Our previous literature has shown isoquercetin plays an important role in protecting against cerebral I/R injury. The present study was conducted to further investigate the effect of isoquercetin on inflammation-induced neuronal injury in I/R rats with the involvement of cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) and inhibitor of NF-κB (I-κB)/nuclear factor-kappa B (NF-κB) signaling pathway mediated by Toll-like receptor 4 (TLR4) and C5a receptor 1 (C5aR1). In vivo middle cerebral artery occlusion and reperfusion (MCAO/R) rat model and in vitro oxygen-glucose deprivation and reperfusion (OGD/R) neuron model were used. MCAO/R induced neurological deficits, cell apoptosis, and release of cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in ischemic brain in rats. Simultaneously, the expression of TLR4 and C5aR1 was significantly up-regulated in both MCAO/R rats and OGD/R neurons, accompanied with the inhibition of cAMP/PKA signaling and activation of I-κB/NF-κB signaling in the cortex of MCAO/R rats. Over-expression of C5aR1 in neurons induced decrease of cell viability, exerting similar effects with OGD/R injury. Isoquercetin acted as a neuroprotective agent against I/R brain injury to suppress inflammatory response and improve cell recovery by inhibiting TLR4 and C5aR1 expression, promoting cAMP/PKA activation, and inhibiting I-κB/NF-κB activation and Caspase 3 expression. TLR4 and C5aR1 contributed to inflammation and apoptosis via activating cAMP/PKA/I-κB/NF-κB signaling during cerebral I/R, suggesting that this signaling pathway may be a potent therapeutic target in ischemic stroke. Isoquercetin was identified as a neuroprotective agent, which maybe a promising therapeutic agent used for the treatment of ischemic stroke and related diseases.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3