Author:
Huang Yuxuan,Zheng Jianxu,Xu Binxing,Li Xuhang,Liu Yu,Wang Zijian,Feng Hua,Cao Shiqi
Abstract
IntroductionThe classification model of motor imagery-based electroencephalogram (MI-EEG) is a new human-computer interface pattern and a new neural rehabilitation assessment method for diseases such as Parkinson's and stroke. However, existing MI-EEG models often suffer from insufficient richness of spatiotemporal feature extraction, learning ability, and dynamic selection ability.MethodsTo solve these problems, this work proposed a convolutional sliding window-attention network (CSANet) model composed of novel spatiotemporal convolution, sliding window, and two-stage attention blocks.ResultsThe model outperformed existing state-of-the-art (SOTA) models in within- and between-individual classification tasks on commonly used MI-EEG datasets BCI-2a and Physionet MI-EEG, with classification accuracies improved by 4.22 and 2.02%, respectively.DiscussionThe experimental results also demonstrated that the proposed type token, sliding window, and local and global multi-head self-attention mechanisms can significantly improve the model's ability to construct, learn, and adaptively select multi-scale spatiotemporal features in MI-EEG signals, and accurately identify electroencephalogram signals in the unilateral motor area. This work provided a novel and accurate classification model for MI-EEG brain-computer interface tasks and proposed a feasible neural rehabilitation assessment scheme based on the model, which could promote the further development and application of MI-EEG methods in neural rehabilitation.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献