Development of an artificial intelligence based occupational noise induced hearing loss early warning system for mine workers

Author:

Madahana Milka C. I.,Ekoru John E. D.,Sebothoma Ben,Khoza-Shangase Katijah

Abstract

IntroductionOccupational Noise Induced Hearing Loss (ONIHL) is one of the most prevalent conditions among mine workers globally. This reality is due to mine workers being exposed to noise produced by heavy machinery, rock drilling, blasting, and so on. This condition can be compounded by the fact that mine workers often work in confined workspaces for extended periods of time, where little to no attenuation of noise occurs. The objective of this research work is to present a preliminary study of the development of a hearing loss, early monitoring system for mine workers.MethodologyThe system consists of a smart watch and smart hearing muff equipped with sound sensors which collect noise intensity levels and the frequency of exposure. The collected information is transferred to a database where machine learning algorithms namely the logistic regression, support vector machines, decision tree and Random Forest Classifier are used to classify and cluster it into levels of priority. Feedback is then sent from the database to a mine worker smart watch based on priority level. In cases where the priority level is extreme, indicating high levels of noise, the smart watch vibrates to alert the miner. The developed system was tested in a mock mine environment consisting of a 67 metres tunnel located in the basement of a building whose roof top represents the “surface” of a mine. The mock-mine shape, size of the tunnel, steel-support infrastructure, and ventilation system are analogous to deep hard-rock mine. The wireless channel propagation of the mock-mine is statistically characterized in 2.4–2.5 GHz frequency band. Actual underground mine material was used to build the mock mine to ensure it mimics a real mine as close as possible. The system was tested by 50 participants both male and female ranging from ages of 18 to 60 years.Results and discussionPreliminary results of the system show decision tree had the highest accuracy compared to the other algorithms used. It has an average testing accuracy of 91.25% and average training accuracy of 99.79%. The system also showed a good response level in terms of detection of noise input levels of exposure, transmission of the information to the data base and communication of recommendations to the miner. The developed system is still undergoing further refinements and testing prior to being tested in an actual mine.

Publisher

Frontiers Media SA

Reference47 articles.

1. Occupational hearing loss in developing countries;Amedofu,2008

2. Comparison of occupational noise legislation in the Americas: an overview and analysis;Arenas;Noise Health,2014

3. Understanding power and rules of thumb for determining sample size;Carmen;Tutor. Quant. Methods Psychol.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3