Sensitivity analysis of point neuron model simulations implemented on neuromorphic hardware

Author:

Dey Srijanie,Dimitrov Alexander G.

Abstract

With the ongoing growth in the field of neuro-inspired computing, newly arriving computational architectures demand extensive validation and testing against existing benchmarks to establish their competence and value. In our work, we break down the validation step into two parts—(1) establishing a methodological and numerical groundwork to establish a comparison between neuromorphic and conventional platforms and, (2) performing a sensitivity analysis on the obtained model regime to assess its robustness. We study the neuronal dynamics based on the Leaky Integrate and Fire (LIF) model, which is built upon data from the mouse visual cortex spanning a set of anatomical and physiological constraints. Intel Corp.'s first neuromorphic chip “Loihi” serves as our neuromorphic platform and results on it are validated against the classical simulations. After setting up a model that allows a seamless mapping between the Loihi and the classical simulations, we find that Loihi replicates classical simulations very efficiently with high precision. This model is then subjected to the second phase of validation, through sensitivity analysis, by assessing the impact on the cost function as values of the significant model parameters are varied. The work is done in two steps—(1) assessing the impact while changing one parameter at a time, (2) assessing the impact while changing two parameters at a time. We observe that the model is quite robust for majority of the parameters with slight change in the cost function. We also identify a subset of the model parameters changes which make the model more sensitive and thus, need to be defined more precisely.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference29 articles.

1. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations;Benjamin;Proc. IEEE,2014

2. “Optimization and performance study of large-scale biological networks for reconfigurable computing,”;Bhuiyan,2010

3. Simulation of networks of spiking neurons: a review of tools and strategies;Brette;J. Comput. Neurosci,2008

4. The computational properties of a simplified cortical column model;Cain;PLoS Comput. Biol,2016

5. “Cognitive computing building block: a versatile and efficient digital neuron model for neurosynaptic cores,”;Cassidy,2013

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bio-realistic neural network implementation on Loihi 2 with Izhikevich neurons;Neuromorphic Computing and Engineering;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3