Rethinking skip connections in Spiking Neural Networks with Time-To-First-Spike coding

Author:

Kim Youngeun,Kahana Adar,Yin Ruokai,Li Yuhang,Stinis Panos,Karniadakis George Em,Panda Priyadarshini

Abstract

Time-To-First-Spike (TTFS) coding in Spiking Neural Networks (SNNs) offers significant advantages in terms of energy efficiency, closely mimicking the behavior of biological neurons. In this work, we delve into the role of skip connections, a widely used concept in Artificial Neural Networks (ANNs), within the domain of SNNs with TTFS coding. Our focus is on two distinct types of skip connection architectures: (1) addition-based skip connections, and (2) concatenation-based skip connections. We find that addition-based skip connections introduce an additional delay in terms of spike timing. On the other hand, concatenation-based skip connections circumvent this delay but produce time gaps between after-convolution and skip connection paths, thereby restricting the effective mixing of information from these two paths. To mitigate these issues, we propose a novel approach involving a learnable delay for skip connections in the concatenation-based skip connection architecture. This approach successfully bridges the time gap between the convolutional and skip branches, facilitating improved information mixing. We conduct experiments on public datasets including MNIST and Fashion-MNIST, illustrating the advantage of the skip connection in TTFS coding architectures. Additionally, we demonstrate the applicability of TTFS coding on beyond image recognition tasks and extend it to scientific machine-learning tasks, broadening the potential uses of SNNs.

Publisher

Frontiers Media SA

Reference64 articles.

1. Mathematical foundations of the time reversal mirror;Bardos;Asympt. Anal.,2002

2. Skip connections in spiking neural networks: an analysis of their effect on network training;Benmeziane;arXiv preprint arXiv:2303.13563,2023

3. “Spikeprop: backpropagation for networks of spiking neurons,”;Bohte;The European Symposium on Artificial Neural Networks,2000

4. Spiking deep convolutional neural networks for energy-efficient object recognition;Cao;Int. J. Comput. Vis.,2015

5. 2022 roadmap on neuromorphic computing and engineering;Christensen;Neuromorph. Comput. Eng,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Image deblurring based on local features and long-range dependencies;Proceedings of the 2024 International Conference on Advanced Robotics, Automation Engineering and Machine Learning;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3