Neuron pruning in temporal domain for energy efficient SNN processor design

Author:

Lew Dongwoo,Tang Hoyoung,Park Jongsun

Abstract

Recently, the accuracy of spike neural network (SNN) has been significantly improved by deploying convolutional neural networks (CNN) and their parameters to SNN. The deep convolutional SNNs, however, suffer from large amounts of computations, which is the major bottleneck for energy efficient SNN processor design. In this paper, we present an input-dependent computation reduction approach, where relatively unimportant neurons are identified and pruned without seriously sacrificing the accuracies. Specifically, a neuron pruning in temporal domain is proposed that prunes less important neurons and skips its future operations based on the layer-wise pruning thresholds of membrane voltages. To find the pruning thresholds, two pruning threshold search algorithms are presented that can efficiently trade-off accuracy and computational complexity with a given computation reduction ratio. The proposed neuron pruning scheme has been implemented using 65 nm CMOS process. The SNN processor achieves a 57% energy reduction and a 2.68× speed up, with up to 0.82% accuracy loss and 7.3% area overhead for CIFAR-10 dataset.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference31 articles.

1. Sna PEA: predictive early activation for reducing computation in deep convolutional neural networks;Akhlaghi,2018

2. Greedy layer-wise training of deep networks;Bengio,2006

3. Loihi: a neuromorphic Manycore processor with on-Chip learning;Davies;IEEE Micro,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3