Hierarchical Network Connectivity and Partitioning for Reconfigurable Large-Scale Neuromorphic Systems

Author:

Mysore Nishant,Hota Gopabandhu,Deiss Stephen R.,Pedroni Bruno U.,Cauwenberghs Gert

Abstract

We present an efficient and scalable partitioning method for mapping large-scale neural network models with locally dense and globally sparse connectivity onto reconfigurable neuromorphic hardware. Scalability in computational efficiency, i.e., amount of time spent in actual computation, remains a huge challenge in very large networks. Most partitioning algorithms also struggle to address the scalability in network workloads in finding a globally optimal partition and efficiently mapping onto hardware. As communication is regarded as the most energy and time-consuming part of such distributed processing, the partitioning framework is optimized for compute-balanced, memory-efficient parallel processing targeting low-latency execution and dense synaptic storage, with minimal routing across various compute cores. We demonstrate highly scalable and efficient partitioning for connectivity-aware and hierarchical address-event routing resource-optimized mapping, significantly reducing the total communication volume recursively when compared to random balanced assignment. We showcase our results working on synthetic networks with varying degrees of sparsity factor and fan-out, small-world networks, feed-forward networks, and a hemibrain connectome reconstruction of the fruit-fly brain. The combination of our method and practical results suggest a promising path toward extending to very large-scale networks and scalable hardware-aware partitioning.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference30 articles.

1. Truenorth: design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip;Akopyan;IEEE Trans. Comput.-Aided Design Integrat. Circuits Syst.,2015

2. “A hybrid multilevel/genetic approach for circuit partitioning,”;Alpert,1996

3. “Anatomy of a cortical simulator,”;Ananthanarayanan,2007

4. Mapping spiking neural networks to neuromorphic hardware;Balaji;IEEE Trans. Very Large Scale Integr. Syst.,2020

5. “Directed graph placement for SNN simulation into a multi-core gals architecture,”;Barchi;2018 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3