Hardware-Efficient Stochastic Binary CNN Architectures for Near-Sensor Computing

Author:

Parmar Vivek,Penkovsky Bogdan,Querlioz Damien,Suri Manan

Abstract

With recent advances in the field of artificial intelligence (AI) such as binarized neural networks (BNNs), a wide variety of vision applications with energy-optimized implementations have become possible at the edge. Such networks have the first layer implemented with high precision, which poses a challenge in deploying a uniform hardware mapping for the network implementation. Stochastic computing can allow conversion of such high-precision computations to a sequence of binarized operations while maintaining equivalent accuracy. In this work, we propose a fully binarized hardware-friendly computation engine based on stochastic computing as a proof of concept for vision applications involving multi-channel inputs. Stochastic sampling is performed by sampling from a non-uniform (normal) distribution based on analog hardware sources. We first validate the benefits of the proposed pipeline on the CIFAR-10 dataset. To further demonstrate its application for real-world scenarios, we present a case-study of microscopy image diagnostics for pathogen detection. We then evaluate benefits of implementing such a pipeline using OxRAM-based circuits for stochastic sampling as well as in-memory computing-based binarized multiplication. The proposed implementation is about 1,000 times more energy efficient compared to conventional floating-precision-based digital implementations, with memory savings of a factor of 45.

Funder

Science and Engineering Research Board

European Research Council

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference42 articles.

1. Survey of stochastic computing;Alaghi;ACM Trans. Embedded Comput. Syst,2013

2. “Parapim: a parallel processing-in-memory accelerator for binary-weight deep neural networks,”;Angizi,2019

3. “In-memory and error-immune differential rram implementation of binarized deep neural networks,”;Bocquet,2018

4. Eyeriss v2: A flexible accelerator for emerging deep neural networks on mobile devices;Chen;IEEE J. Emerg. Select. Top. Circ. Syst,2019

5. “Chipmunk: A systolically scalable 0.9 mm2, 3.08gop/s/mw @ 1.2 mw accelerator for near-sensor recurrent neural network inference,”;Conti,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3