A single fast Hebbian-like process enabling one-shot class addition in deep neural networks without backbone modification

Author:

Hosoda Kazufumi,Nishida Keigo,Seno Shigeto,Mashita Tomohiro,Kashioka Hideki,Ohzawa Izumi

Abstract

One-shot learning, the ability to learn a new concept from a single instance, is a distinctive brain function that has garnered substantial interest in machine learning. While modeling physiological mechanisms poses challenges, advancements in artificial neural networks have led to performances in specific tasks that rival human capabilities. Proposing one-shot learning methods with these advancements, especially those involving simple mechanisms, not only enhance technological development but also contribute to neuroscience by proposing functionally valid hypotheses. Among the simplest methods for one-shot class addition with deep learning image classifiers is “weight imprinting,” which uses neural activity from a new class image data as the corresponding new synaptic weights. Despite its simplicity, its relevance to neuroscience is ambiguous, and it often interferes with original image classification, which is a significant drawback in practical applications. This study introduces a novel interpretation where a part of the weight imprinting process aligns with the Hebbian rule. We show that a single Hebbian-like process enables pre-trained deep learning image classifiers to perform one-shot class addition without any modification to the original classifier's backbone. Using non-parametric normalization to mimic brain's fast Hebbian plasticity significantly reduces the interference observed in previous methods. Our method is one of the simplest and most practical for one-shot class addition tasks, and its reliance on a single fast Hebbian-like process contributes valuable insights to neuroscience hypotheses.

Publisher

Frontiers Media SA

Reference73 articles.

1. AbadiM. AgarwalA. BarhamP. BrevdoE. ChenZ. CitroC. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems2015

2. A one-shot shift from explore to exploit in monkey prefrontal cortex;Achterberg;J. Neurosci,2022

3. Analysis of data from viral DNA microchips;Amaratunga;J. Am. Stat. Assoc,2001

4. AndrewsM. Trained Image Classification Models for Keras2017

5. “Learning to learn by gradient descent by gradient descent,” AndrychowiczM. DenilM. GomezS. HoffmanM. W. PfauD. SchaulT. Curran Associates, Inc.Advances in Neural Information Processing Systems, Vol. 292016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3