Closed-Loop Identification of Baroreflex Properties in the Frequency Domain

Author:

Kawada Toru,Saku Keita,Miyamoto Tadayoshi

Abstract

The arterial baroreflex system plays a key role in maintaining the homeostasis of arterial pressure (AP). Changes in AP affect autonomic nervous activities through the baroreflex neural arc, whereas changes in the autonomic nervous activities, in turn, alter AP through the baroreflex peripheral arc. This closed-loop negative feedback operation makes it difficult to identify open-loop dynamic characteristics of the neural and peripheral arcs. Regarding sympathetic AP controls, we examined the applicability of a nonparametric frequency-domain closed-loop identification method to the carotid sinus baroreflex system in anesthetized rabbits. This article compares the results of an open-loop analysis applied to open-loop data, an open-loop analysis erroneously applied to closed-loop data, and a closed-loop analysis applied to closed-loop data. To facilitate the understanding of the analytical method, sample data files and sample analytical codes were provided. In the closed-loop identification, properties of the unknown central noise that modulated the sympathetic nerve activity and the unknown peripheral noise that fluctuated AP affected the accuracy of the estimation results. A priori knowledge about the open-loop dynamic characteristics of the arterial baroreflex system may be used to advance the assessment of baroreflex function under closed-loop conditions in the future.

Funder

Japan Society for the Promotion of Science

Salt Science Research Foundation

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of angiotensin II and telmisartan on in vivo high‐resolution renal arterial impedance in rats;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2024-09-01

2. Short-term dynamic characteristics of diuresis during exogenous pressure perturbations with and without arterial baroreflex control;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2024-03-01

3. Input-size dependence of the baroreflex neural arc transfer characteristics during Gaussian white noise inputs;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2024-02-01

4. BaroWavelet: An R-based tool for dynamic baroreflex evaluation through wavelet analysis techniques;Computer Methods and Programs in Biomedicine;2023-12

5. Dynamic accentuated antagonism of heart rate control during different levels of vagal nerve stimulation intensity in rats;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3