Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks

Author:

Chakraborty Biswadeep,Mukhopadhyay Saibal

Abstract

A Spiking Neural Network (SNN) is trained with Spike Timing Dependent Plasticity (STDP), which is a neuro-inspired unsupervised learning method for various machine learning applications. This paper studies the generalizability properties of the STDP learning processes using the Hausdorff dimension of the trajectories of the learning algorithm. The paper analyzes the effects of STDP learning models and associated hyper-parameters on the generalizability properties of an SNN. The analysis is used to develop a Bayesian optimization approach to optimize the hyper-parameters for an STDP model for improving the generalizability properties of an SNN.

Funder

Army Research Office

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference68 articles.

1. Spiking time-dependent plasticity leads to efficient coding of predictions;Aceituno;Biol. Cybernet,2020

2. Can SGD learn recurrent neural networks with provable generalization?;Allen-Zhu;arXiv preprint arXiv:1902.01028,2019

3. Learning and generalization in overparameterized neural networks, going beyond two layers;Allen-Zhu;arXiv preprint arXiv:1811.04918,2018

4. Comparing dynamics: deep neural networks versus glassy systems,;Baity-Jesi,2018

5. Synaptic plasticity in a cerebellum-like structure depends on temporal order;Bell;Nature,1997

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3