A Transfer Model Based on Supervised Multi-Layer Dictionary Learning for Brain Tumor MRI Image Recognition

Author:

Gu Yi,Li Kang

Abstract

Artificial intelligence (AI) is an effective technology for automatic brain tumor MRI image recognition. The training of an AI model requires a large number of labeled data, but medical data needs to be labeled by professional clinicians, which makes data collection complex and expensive. Moreover, a traditional AI model requires that the training data and test data must follow the independent and identically distributed. To solve this problem, we propose a transfer model based on supervised multi-layer dictionary learning (TSMDL) for brain tumor MRI image recognition in this paper. With the help of the knowledge learned from related domains, the goal of this model is to solve the task of transfer learning where the target domain has only a small number of labeled samples. Based on the framework of multi-layer dictionary learning, the proposed model learns the common shared dictionary of source and target domains in each layer to explore the intrinsic connections and shared information between different domains. At the same time, by making full use of the label information of samples, the Laplacian regularization term is introduced to make the dictionary coding of similar samples as close as possible and the dictionary coding of different class samples as different as possible. The recognition experiments on brain MRI image datasets REMBRANDT and Figshare show that the model performs better than competitive state of-the-art methods.

Funder

Natural Science Foundation of Jilin Province

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Shift-Invariance for Accurate Brain MRI Skull-Stripping using Adaptive Polyphase Pooling in Modified U-Net;2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS);2023-12-11

2. EFF_D_SVM: a robust multi-type brain tumor classification system;Frontiers in Neuroscience;2023-09-29

3. Improved Densenet Model for Automatic Categorization of Brain Tumors;2022 IEEE 3rd Global Conference for Advancement in Technology (GCAT);2022-10-07

4. Patchwise Sparse Dictionary Learning from pre-trained Neural Network Activation Maps for Anomaly Detection in Images;2022 26th International Conference on Pattern Recognition (ICPR);2022-08-21

5. Hierarchical Domain Adaptation Projective Dictionary Pair Learning Model for EEG Classification in IoMT Systems;IEEE Transactions on Computational Social Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3