Evidence for a protective effect of the loss of α4-containing nicotinic acetylcholine receptors on Aβ-related neuropathology in Tg2576 mice

Author:

Vilella Antonietta,Romoli Benedetto,Bodria Martina,Pons Stéphanie,Maskos Uwe,Zoli Michele

Abstract

IntroductionLoss of cholinergic neurons as well as α4β2* (* = containing) nicotinic acetylcholine receptors (nAChRs) is a prominent feature of Alzheimer’s disease (AD). Specifically, amyloid β (Aβ), the principal pathogenic factor of AD, is a high affinity ligand for nAChRs. Yet, the pathophysiological role of nAChRs in AD is not well established.MethodsIn the present study, we have investigated the effects of the loss of α4* nAChRs on the histological alterations of the Tg2576 mouse model of AD (APPswe) crossing hemizygous APPswe mice with mice carrying the genetic inactivation of α4 nAChR subunit (α4KO).ResultsA global decrease in Aβ plaque load was observed in the forebrain of APPswe/α4KO mice in comparison with APPswe mice, that was particularly marked in neocortex of 15 month-old mice. At the same age, several alterations in synaptophysin immunoreactivity were observed in cortico-hippocampal regions of APPswe mice that were partially counteracted by α4KO. The analysis of the immunoreactivity of specific astroglia (glial fibrillary acidic protein, GFAP) and microglia (ionized calcium-binding adapter molecule, Iba1) markers showed an increase in the number as well as in the area occupied by these cells in APPswe mice that were partially counteracted by α4KO.ConclusionOverall, the present histological study points to a detrimental role of α4* nAChRs that may be specific for Aβ-related neuropathology.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pharmaceutical-mediated neuroimmune modulation in psychiatric/psychological adverse events;Progress in Neuro-Psychopharmacology and Biological Psychiatry;2024-12

2. Switching On/Off Amyloid Plaque Formation in Transgenic Animal Models of Alzheimer’s Disease;International Journal of Molecular Sciences;2023-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3