Predicting Ecological Momentary Assessments in an App for Tinnitus by Learning From Each User's Stream With a Contextual Multi-Armed Bandit

Author:

Shahania Saijal,Unnikrishnan Vishnu,Pryss Rüdiger,Kraft Robin,Schobel Johannes,Hannemann Ronny,Schlee Winny,Spiliopoulou Myra

Abstract

Ecological Momentary Assessments (EMA) deliver insights on how patients perceive tinnitus at different times and how they are affected by it. Moving to the next level, an mHealth app can support users more directly by predicting a user's next EMA and recommending personalized services based on these predictions. In this study, we analyzed the data of 21 users who were exposed to an mHealth app with non-personalized recommendations, and we investigate ways of predicting the next vector of EMA answers. We studied the potential of entity-centric predictors that learn for each user separately and neighborhood-based predictors that learn for each user separately but take also similar users into account, and we compared them to a predictor that learns from all past EMA indiscriminately, without considering which user delivered which data, i.e., to a “global model.” Since users were exposed to two versions of the non-personalized recommendations app, we employed a Contextual Multi-Armed Bandit (CMAB), which chooses the best predictor for each user at each time point, taking each user's group into account. Our analysis showed that the combination of predictors into a CMAB achieves good performance throughout, since the global model was chosen at early time points and for users with few data, while the entity-centric, i.e., user-specific, predictors were used whenever the user had delivered enough data—the CMAB chose itself when the data were “enough.” This flexible setting delivered insights on how user behavior can be predicted for personalization, as well as insights on the specific mHealth data. Our main findings are that for EMA prediction the entity-centric predictors should be preferred over a user-insensitive global model and that the choice of EMA items should be further investigated because some items are answered more rarely than others. Albeit our CMAB-based prediction workflow is robust to differences in exposition and interaction intensity, experimentators that design studies with mHealth apps should be prepared to quantify and closely monitor differences in the intensity of user-app interaction, since users with many interactions may have a disproportionate influence on global models.

Funder

Third Health Programme

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference28 articles.

1. Revisiting neighbourhood-based recommenders for temporal scenarios;Bellogín,2017

2. Learning from time-changing data with adaptive windowing;Bifet,2007

3. Towards an understanding of tinnitus heterogeneity;Cederroth;Front. Aging Neurosci.,2019

4. Tinnitus and tinnitus disorder: theoretical and operational definitions (an international multidisciplinary proposal);De Ridder,2021

5. Adaptive random forests for evolving data stream classification;Gomes;Mach. Learn.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3