A study on the combination of functional connection features and Riemannian manifold in EEG emotion recognition

Author:

Wu Minchao,Ouyang Rui,Zhou Chang,Sun Zitong,Li Fan,Li Ping

Abstract

IntroductionAffective computing is the core for Human-computer interface (HCI) to be more intelligent, where electroencephalogram (EEG) based emotion recognition is one of the primary research orientations. Besides, in the field of brain-computer interface, Riemannian manifold is a highly robust and effective method. However, the symmetric positive definiteness (SPD) of the features limits its application.MethodsIn the present work, we introduced the Laplace matrix to transform the functional connection features, i.e., phase locking value (PLV), Pearson correlation coefficient (PCC), spectral coherent (COH), and mutual information (MI), to into semi-positive, and the max operator to ensure the transformed feature be positive. Then the SPD network is employed to extract the deep spatial information and a fully connected layer is employed to validate the effectiveness of the extracted features. Particularly, the decision layer fusion strategy is utilized to achieve more accurate and stable recognition results, and the differences of classification performance of different feature combinations are studied. What's more, the optimal threshold value applied to the functional connection feature is also studied.ResultsThe public emotional dataset, SEED, is adopted to test the proposed method with subject dependent cross-validation strategy. The result of average accuracies for the four features indicate that PCC outperform others three features. The proposed model achieve best accuracy of 91.05% for the fusion of PLV, PCC, and COH, followed by the fusion of all four features with the accuracy of 90.16%.DiscussionThe experimental results demonstrate that the optimal thresholds for the four functional connection features always kept relatively stable within a fixed interval. In conclusion, the experimental results demonstrated the effectiveness of the proposed method.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3