A Brain-Inspired Theory of Mind Spiking Neural Network for Reducing Safety Risks of Other Agents

Author:

Zhao Zhuoya,Lu Enmeng,Zhao Feifei,Zeng Yi,Zhao Yuxuan

Abstract

Artificial Intelligence (AI) systems are increasingly applied to complex tasks that involve interaction with multiple agents. Such interaction-based systems can lead to safety risks. Due to limited perception and prior knowledge, agents acting in the real world may unconsciously hold false beliefs and strategies about their environment, leading to safety risks in their future decisions. For humans, we can usually rely on the high-level theory of mind (ToM) capability to perceive the mental states of others, identify risk-inducing errors, and offer our timely help to keep others away from dangerous situations. Inspired by the biological information processing mechanism of ToM, we propose a brain-inspired theory of mind spiking neural network (ToM-SNN) model to enable agents to perceive such risk-inducing errors inside others' mental states and make decisions to help others when necessary. The ToM-SNN model incorporates the multiple brain areas coordination mechanisms and biologically realistic spiking neural networks (SNNs) trained with Reward-modulated Spike-Timing-Dependent Plasticity (R-STDP). To verify the effectiveness of the ToM-SNN model, we conducted various experiments in the gridworld environments with random agents' starting positions and random blocking walls. Experimental results demonstrate that the agent with the ToM-SNN model selects rescue behavior to help others avoid safety risks based on self-experience and prior knowledge. To the best of our knowledge, this study provides a new perspective to explore how agents help others avoid potential risks based on bio-inspired ToM mechanisms and may contribute more inspiration toward better research on safety risks.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference49 articles.

1. Neuroanatomical and neurochemical bases of theory of mind;Abu-Akel;Neuropsychologia,2011

2. Constrained policy optimization;Achiam,2017

3. Repeated inverse reinforcement learning;Amin,2017

4. Concrete problems in AI safety;Amodei,2016

5. Bayesian theory of mind: modeling joint belief-desire attribution;Baker,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3