Generative adversarial networks with adaptive normalization for synthesizing T2-weighted magnetic resonance images from diffusion-weighted images

Author:

Mao Yanyan,Chen Chao,Wang Zhenjie,Cheng Dapeng,You Panlu,Huang Xingdan,Zhang Baosheng,Zhao Feng

Abstract

Recently, attention has been drawn toward brain imaging technology in the medical field, among which MRI plays a vital role in clinical diagnosis and lesion analysis of brain diseases. Different sequences of MR images provide more comprehensive information and help doctors to make accurate clinical diagnoses. However, their costs are particularly high. For many image-to-image synthesis methods in the medical field, supervised learning-based methods require labeled datasets, which are often difficult to obtain. Therefore, we propose an unsupervised learning-based generative adversarial network with adaptive normalization (AN-GAN) for synthesizing T2-weighted MR images from rapidly scanned diffusion-weighted imaging (DWI) MR images. In contrast to the existing methods, deep semantic information is extracted from the high-frequency information of original sequence images, which are then added to the feature map in deconvolution layers as a modality mask vector. This image fusion operation results in better feature maps and guides the training of GANs. Furthermore, to better preserve semantic information against common normalization layers, we introduce AN, a conditional normalization layer that modulates the activations using the fused feature map. Experimental results show that our method of synthesizing T2 images has a better perceptual quality and better detail than the other state-of-the-art methods.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference48 articles.

1. Image quality transfer via random forest regression: Applications in diffusion MRI.;Alexander;Med. Image Comput. Comput. Assist. Interv.,2014

2. Large scale GAN training for high fidelity natural image synthesis.;Andrew;arXiv,2019

3. Layer normalization.;Ba;ArXiv,2016

4. Large scale GAN training for high fidelity natural image synthesis.;Brock;ArXiv,2019

5. Sketch2photo: Internet image montage.;Chen;ACM Trans. Graph.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3