EEG and peripheral markers of viewer ratings: a study of short films

Author:

Kosonogov Vladimir,Shelepenkov Danila,Rudenkiy Nikita

Abstract

IntroductionCinema is an important part of modern culture, influencing millions of viewers. Research suggested many models for the prediction of film success, one of them being the use of neuroscientific tools. The aim of our study was to find physiological markers of viewer perception and correlate them to short film ratings given by our subjects. Short films are used as a test case for directors and screenwriters and can be created to raise funding for future projects; however, they have not been studied properly with physiological methods.MethodsWe recorded electroencephalography (18 sensors), facial electromyography (corrugator supercilii and zygomaticus major), photoplethysmography, and skin conductance in 21 participants while watching and evaluating 8 short films (4 dramas and 4 comedies). Also, we used machine learning (CatBoost, SVR) to predict the exact rating of each film (from 1 to 10), based on all physiological indicators. In addition, we classified each film as low or high rated by our subjects (with Logistic Regression, KNN, decision tree, CatBoost, and SVC).ResultsThe results showed that ratings did not differ between genres. Corrugator supercilii activity (“frowning” muscle) was larger when watching dramas; whereas zygomaticus major (“smiling” muscle) activity was larger during the watching of comedies. Of all somatic and vegetative markers, only zygomaticus major activity, PNN50, SD1/SD2 (heart rate variability parameters) positively correlated to the film ratings. The EEG engagement indices, beta/(alpha+theta) and beta/alpha correlated positively with the film ratings in the majority of sensors. Arousal (betaF3 + betaF4)/(alphaF3 + alphaF4), and valence (alphaF4/betaF4) - (alphaF3/betaF3) indices also correlated positively to film ratings. When we attempted to predict exact ratings, MAPE was 0.55. As for the binary classification, logistic regression yielded the best values (area under the ROC curve = 0.62) than other methods (0.51–0.60).DiscussionOverall, we revealed EEG and peripheral markers, which reflect viewer ratings and can predict them to a certain extent. In general, high film ratings can reflect a fusion of high arousal and different valence, positive valence being more important. These findings broaden our knowledge about the physiological basis of viewer perception and can be potentially used at the stage of film production.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference74 articles.

1. Movie success prediction using data mining;Ahmad,2017

2. EEG-based measurement system for monitoring student engagement in learning 4.0;Apicella;Sci. Rep.,2022

3. The spectator facing the cut: a Neurocinematics review;Aznar,2019

4. A ticket for your thoughts: method for predicting movie trailer recall and future ticket sales using neural similarity among moviegoers;Barnett;J. Consum. Res.,2017

5. EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks;Berka;Aviat. Space Environ. Med.,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterizing Information Seeking Processes with Multiple Physiological Signals;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

2. Viewer Emotional Response to Webtoon-Based Drama: An EEG Analysis;International Journal of Human–Computer Interaction;2023-11-29

3. The role of engagement and arousal in emotion regulation: an EEG study;Experimental Brain Research;2023-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3