Adaptive STDP-based on-chip spike pattern detection

Author:

Gautam Ashish,Kohno Takashi

Abstract

A spiking neural network (SNN) is a bottom-up tool used to describe information processing in brain microcircuits. It is becoming a crucial neuromorphic computational model. Spike-timing-dependent plasticity (STDP) is an unsupervised brain-like learning rule implemented in many SNNs and neuromorphic chips. However, a significant performance gap exists between ideal model simulation and neuromorphic implementation. The performance of STDP learning in neuromorphic chips deteriorates because the resolution of synaptic efficacy in such chips is generally restricted to 6 bits or less, whereas simulations employ the entire 64-bit floating-point precision available on digital computers. Previously, we introduced a bio-inspired learning rule named adaptive STDP and demonstratedvianumerical simulation that adaptive STDP (using only 4-bit fixed-point synaptic efficacy) performs similarly to STDP learning (using 64-bit floating-point precision) in a noisy spike pattern detection model. Herein, we present the experimental results demonstrating the performance of adaptive STDP learning. To the best of our knowledge, this is the first study that demonstrates unsupervised noisy spatiotemporal spike pattern detection to perform well and maintain the simulation performance on a mixed-signal CMOS neuromorphic chip with low-resolution synaptic efficacy. The chip was designed in Taiwan Semiconductor Manufacturing Company (TSMC) 250 nm CMOS technology node and comprises a soma circuit and 256 synapse circuits along with their learning circuitry.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3