Dual attentive fusion for EEG-based brain-computer interfaces

Author:

Du Yuanhua,Huang Jian,Huang Xiuyu,Shi Kaibo,Zhou Nan

Abstract

The classification based on Electroencephalogram (EEG) is a challenging task in the brain-computer interface (BCI) field due to data with a low signal-to-noise ratio. Most current deep learning based studies in this challenge focus on designing a desired convolutional neural network (CNN) to learn and classify the raw EEG signals. However, only CNN itself may not capture the highly discriminative patterns of EEG due to a lack of exploration of attentive spatial and temporal dynamics. To improve information utilization, this study proposes a Dual Attentive Fusion Model (DAFM) for the EEG-based BCI. DAFM is employed to capture the spatial and temporal information by modeling the interdependencies between the features from the EEG signals. To our best knowledge, our method is the first to fuse spatial and temporal dimensions in an interactive attention module. This module improves the expression ability of the extracted features. Extensive experiments implemented on four publicly available datasets demonstrate that our method outperforms state-of-the-art methods. Meanwhile, this work also indicates the effectiveness of Dual Attentive Fusion Module.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3