Riemannian transfer learning based on log-Euclidean metric for EEG classification

Author:

Zhuo Fanbo,Zhang Xiaocheng,Tang Fengzhen,Yu Yaobo,Liu Lianqing

Abstract

IntroductionBrain computer interfaces (BCI), which establish a direct interaction between the brain and the external device bypassing peripheral nerves, is one of the hot research areas. How to effectively convert brain intentions into instructions for controlling external devices in real-time remains a key issue that needs to be addressed in brain computer interfaces. The Riemannian geometry-based methods have achieved competitive results in decoding EEG signals. However, current Riemannian classifiers tend to overlook changes in data distribution, resulting in degenerated classification performance in cross-session and/or cross subject scenarios.MethodsThis paper proposes a brain signal decoding method based on Riemannian transfer learning, fully considering the drift of the data distribution. Two Riemannian transfer learning methods based log-Euclidean metric are developed, such that historical data (source domain) can be used to aid the training of the Riemannian decoder for the current task, or data from other subjects can be used to boost the training of the decoder for the target subject.ResultsThe proposed methods were verified on BCI competition III, IIIa, and IV 2a datasets. Compared with the baseline that without transfer learning, the proposed algorithm demonstrates superior classification performance. In contrast to the Riemann transfer learning method based on the affine invariant Riemannian metric, the proposed method obtained comparable classification performance, but is much more computationally efficient.DiscussionWith the help of proposed transfer learning method, the Riemannian classifier obtained competitive performance to existing methods in the literature. More importantly, the transfer learning process is unsupervised and time-efficient, possessing potential for online learning scenarios.

Publisher

Frontiers Media SA

Reference30 articles.

1. A comprehensive review of EEG-based brain-computer interface paradigms;Abiri;J. Neural Eng,2019

2. Log-Euclidean metrics for fast and simple calculus on diffusion tensors;Arsigny;Magn. Reson. Med,2006

3. Geometric means in a novel vector space structure on symmetric positive-definite matrices;Arsigny;SIAM J. Matrix Anal. Appl,2007

4. Stationarity of matrix relevance LVQ;Biehl,2015

5. A new generation of brain-computer interface based on Riemannian geometry;Congedo;arXiv preprint,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3