Contextual MEG and EEG Source Estimates Using Spatiotemporal LSTM Networks

Author:

Dinh Christoph,Samuelsson John G.,Hunold Alexander,Hämäläinen Matti S.,Khan Sheraz

Abstract

Most magneto- and electroencephalography (M/EEG) based source estimation techniques derive their estimates sample wise, independently across time. However, neuronal assemblies are intricately interconnected, constraining the temporal evolution of neural activity that is detected by MEG and EEG; the observed neural currents must thus be highly context dependent. Here, we use a network of Long Short-Term Memory (LSTM) cells where the input is a sequence of past source estimates and the output is a prediction of the following estimate. This prediction is then used to correct the estimate. In this study, we applied this technique on noise-normalized minimum norm estimates (MNE). Because the correction is found by using past activity (context), we call this implementation Contextual MNE (CMNE), although this technique can be used in conjunction with any source estimation method. We test CMNE on simulated epileptiform activity and recorded auditory steady state response (ASSR) data, showing that the CMNE estimates exhibit a higher degree of spatial fidelity than the unfiltered estimates in the tested cases.

Funder

National Institutes of Health

Microsoft

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference69 articles.

1. Seizure prediction using bidirectional LSTM.;Ali;Proceedings of the International Conference Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health.,2019

2. A bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem.;Baillet;IEEE Trans. Biomed. Eng.,1997

3. Space–time event sparse penalization for magneto-/electroencephalography.;Bolstad;Neuroimage,2009

4. Temporal fluctuations in coherence of brain waves.;Bullock;Proc. Natl. Acad. Sci. U.S.A.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3