Placental transcriptional signatures associated with cerebral white matter damage in the neonate

Author:

Marable Carmen Amelia,Roell Kyle,Kuban Karl,O’Shea T. Michael,Fry Rebecca C.

Abstract

Cerebral white matter is the most common anatomic location of neonatal brain injury in preterm newborns. Factors that predispose preterm newborns to white matter damage are understudied. In relation to studies of the placenta-brain-axis, dysregulated placental gene expression may play a role in preterm brain damage given its implication in programming early life origins of disease, including neurological disorders. There is a critical need to investigate the relationships between the placental transcriptome and white matter damage in the neonate. In a cohort of extremely low gestational age newborns (ELGANs), we aimed to investigate the relationship between the placental transcriptome and white matter damage as assessed by neonatal cranial ultrasound studies (echolucency and/or ventriculomegaly). We hypothesized that genes involved in inflammatory processes would be more highly expressed in placentas of ELGANs who developed ultrasound-defined indicators of white matter damage. Relative to either form of white matter damage, 659 placental genes displayed altered transcriptional profiles. Of these white matter damage-associated genes, largely distinct patterns of gene expression were observed in the study (n = 415/659 genes). Specifically, 381 genes were unique to echolucency and 34 genes were unique to ventriculomegaly. Pathways involved in hormone disruption and metabolism were identified among the unique echolucency or ventriculomegaly genes. Interestingly, a common set of 244 genes or 37% of all genes was similarly dysregulated in the placenta relative to both echolucency and ventriculomegaly. For this common set of white matter damage-related genes, pathways involved in inflammation, immune response and apoptosis, were enriched. Among the white matter damage-associated genes are genes known to be involved in Autism Spectrum Disorder (ASD) and endocrine system disorders. These data highlight differential mRNA expression patterning in the placenta and provide insight into potential etiologic factors that may predispose preterm newborns to white matter damage. Future studies will build upon this work to include functional measures of neurodevelopment as well as measures of brain volume later in life.

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3