Neuronal Responses to Short Wavelength Light Deficiency in the Rat Subcortical Visual System

Author:

Orlowska-Feuer Patrycja,Smyk Magdalena Kinga,Alwani Anna,Lewandowski Marian Henryk

Abstract

The amount and spectral composition of light changes considerably during the day, with dawn and dusk being the most crucial moments when light is within the mesopic range and short wavelength enriched. It was recently shown that animals use both cues to adjust their internal circadian clock, thereby their behavior and physiology, with the solar cycle. The role of blue light in circadian processes and neuronal responses is well established, however, an unanswered question remains: how do changes in the spectral composition of light (short wavelengths blocking) influence neuronal activity? In this study we addressed this question by performing electrophysiological recordings in image (dorsal lateral geniculate nucleus; dLGN) and non-image (the olivary pretectal nucleus; OPN, the suprachiasmatic nucleus; SCN) visual structures to determine neuronal responses to spectrally varied light stimuli. We found that removing short-wavelength from the polychromatic light (cut off at 525 nm) attenuates the most transient ON and sustained cells in the dLGN and OPN, respectively. Moreover, we compared the ability of different types of sustained OPN neurons (either changing or not their response profile to filtered polychromatic light) to irradiance coding, and show that both groups achieve it with equal efficacy. On the other hand, even very dim monochromatic UV light (360 nm; log 9.95 photons/cm2/s) evokes neuronal responses in the dLGN and SCN. To our knowledge, this is the first electrophysiological experiment supporting previous behavioral findings showing visual and circadian functions disruptions under short wavelength blocking environment. The current results confirm that neuronal activity in response to polychromatic light in retinorecipient structures is affected by removing short wavelengths, however, with type and structure – specific action. Moreover, they show that rats are sensitive to even very dim UV light.

Funder

Narodowe Centrum Nauki

Publisher

Frontiers Media SA

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3