EnforceSNN: Enabling resilient and energy-efficient spiking neural network inference considering approximate DRAMs for embedded systems

Author:

Putra Rachmad Vidya Wicaksana,Hanif Muhammad Abdullah,Shafique Muhammad

Abstract

Spiking Neural Networks (SNNs) have shown capabilities of achieving high accuracy under unsupervised settings and low operational power/energy due to their bio-plausible computations. Previous studies identified that DRAM-based off-chip memory accesses dominate the energy consumption of SNN processing. However, state-of-the-art works do not optimize the DRAM energy-per-access, thereby hindering the SNN-based systems from achieving further energy efficiency gains. To substantially reduce the DRAM energy-per-access, an effective solution is to decrease the DRAM supply voltage, but it may lead to errors in DRAM cells (i.e., so-called approximate DRAM). Toward this, we propose EnforceSNN, a novel design framework that provides a solution for resilient and energy-efficient SNN inference using reduced-voltage DRAM for embedded systems. The key mechanisms of our EnforceSNN are: (1) employing quantized weights to reduce the DRAM access energy; (2) devising an efficient DRAM mapping policy to minimize the DRAM energy-per-access; (3) analyzing the SNN error tolerance to understand its accuracy profile considering different bit error rate (BER) values; (4) leveraging the information for developing an efficient fault-aware training (FAT) that considers different BER values and bit error locations in DRAM to improve the SNN error tolerance; and (5) developing an algorithm to select the SNN model that offers good trade-offs among accuracy, memory, and energy consumption. The experimental results show that our EnforceSNN maintains the accuracy (i.e., no accuracy loss for BER ≤ 10−3) as compared to the baseline SNN with accurate DRAM while achieving up to 84.9% of DRAM energy saving and up to 4.1x speed-up of DRAM data throughput across different network sizes.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference70 articles.

1. TrueNorth: design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip;Akopyan;IEEE Trans. Comput. Aided Design Integr. Circ. Syst,2015

2. An overview on edge computing research;Cao;IEEE Access,2020

3. ChandrasekarK.. Ph,D, thesisHigh-level power estimation and optimization of DRAMs2014

4. “Understanding reduced-voltage operation in modern DRAM devices: experimental characterization, analysis, and mechanisms,”;Chang,2017

5. Secure cyber-physical systems: Current trends, tools and open research problems;Chattopadhyay;Design Autom. Test Eur. Conf. Exhibit,2017

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3