Reconstruction of perceived face images from brain activities based on multi-attribute constraints

Author:

Hou Xiaoyuan,Zhao Jing,Zhang Hui

Abstract

Reconstruction of perceived faces from brain signals is a hot topic in brain decoding and an important application in the field of brain-computer interfaces. Existing methods do not fully consider the multiple facial attributes represented in face images, and their different activity patterns at multiple brain regions are often ignored, which causes the reconstruction performance very poor. In the current study, we propose an algorithmic framework that efficiently combines multiple face-selective brain regions for precise multi-attribute perceived face reconstruction. Our framework consists of three modules: a multi-task deep learning network (MTDLN), which is developed to simultaneously extract the multi-dimensional face features attributed to facial expression, identity and gender from one single face image, a set of linear regressions (LR), which is built to map the relationship between the multi-dimensional face features and the brain signals from multiple brain regions, and a multi-conditional generative adversarial network (mcGAN), which is used to generate the perceived face images constrained by the predicted multi-dimensional face features. We conduct extensive fMRI experiments to evaluate the reconstruction performance of our framework both subjectively and objectively. The results show that, compared with the traditional methods, our proposed framework better characterizes the multi-attribute face features in a face image, better predicts the face features from brain signals, and achieves better reconstruction performance of both seen and unseen face images in both visual effects and quantitative assessment. Moreover, besides the state-of-the-art intra-subject reconstruction performance, our proposed framework can also realize inter-subject face reconstruction to a certain extent.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Neuroscience

Reference61 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3