Investigating brain cortical activity in patients with post-COVID-19 brain fog

Author:

Wojcik Grzegorz M.,Shriki Oren,Kwasniewicz Lukasz,Kawiak Andrzej,Ben-Horin Yarden,Furman Sagi,Wróbel Krzysztof,Bartosik Bernadetta,Panas Ewelina

Abstract

Brain fog is a kind of mental problem, similar to chronic fatigue syndrome, and appears about 3 months after the infection with COVID-19 and lasts up to 9 months. The maximum magnitude of the third wave of COVID-19 in Poland was in April 2021. The research referred here aimed at carrying out the investigation comprising the electrophysiological analysis of the patients who suffered from COVID-19 and had symptoms of brain fog (sub-cohort A), suffered from COVID-19 and did not have symptoms of brain fog (sub-cohort B), and the control group that had no COVID-19 and no symptoms (sub-cohort C). The aim of this article was to examine whether there are differences in the brain cortical activity of these three sub-cohorts and, if possible differentiate and classify them using the machine-learning tools. he dense array electroencephalographic amplifier with 256 electrodes was used for recordings. The event-related potentials were chosen as we expected to find the differences in the patients' responses to three different mental tasks arranged in the experiments commonly known in experimental psychology: face recognition, digit span, and task switching. These potentials were plotted for all three patients' sub-cohorts and all three experiments. The cross-correlation method was used to find differences, and, in fact, such differences manifested themselves in the shape of event-related potentials on the cognitive electrodes. The discussion of such differences will be presented; however, an explanation of such differences would require the recruitment of a much larger cohort. In the classification problem, the avalanche analysis for feature extractions from the resting state signal and linear discriminant analysis for classification were used. The differences between sub-cohorts in such signals were expected to be found. Machine-learning tools were used, as finding the differences with eyes seemed impossible. Indeed, the A&B vs. C, B&C vs. A, A vs. B, A vs. C, and B vs. C classification tasks were performed, and the efficiency of around 60–70% was achieved. In future, probably there will be pandemics again due to the imbalance in the natural environment, resulting in the decreasing number of species, temperature increase, and climate change-generated migrations. The research can help to predict brain fog after the COVID-19 recovery and prepare the patients for better convalescence. Shortening the time of brain fog recovery will be beneficial not only for the patients but also for social conditions.

Funder

Narodowa Agencja Wymiany Akademickiej

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3